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The month was unusually cold, cloudy, and stormy, and the ad-
vance of vegetation, as well as the progress of farm work incident to
the season, was greatly delayed. Snow fell to unusual amounts in
portions of the Great Valley division, and light to killing frosts oc-
curred, but no special damage resulted from either.—Kdward A. Evans.

Washington.—The mean temperature was 45.9°, or 2.2° below normal;
the highest was 79°, at Pasco on the 10th, and the lowest, 11°, at Re-
public on the 3d. The average precipitation was 3.49, or (.76 above
normal; the greatest monthly amount, 13.42, occurred st Clearwater,
and the least, trace, at Pasco.

The weather was in general too cool for rapid growth of crops, but
was not unfavorable to winter wheat and early spring wheat. Spring
seeding was late and fruit bloomed two or three weeks later than
usual.—@G. N. Salisbury.

West Virginia.—The mean temperature was 47.5°, or 5.1° helow nor-
mal; the highest was 95°, at Point Pleasant on the 30th, and the low-
est, 18°, at Philippi on the 1st.
3.53 above normal; the greatest monthly amount, 10.70, occurred at
Clay, and the least, 4.95, at Beverly.

The cold, stormy, and unseasonable weather, with excessive precipi-
tation, was very unfavorable for farm work and the growth of vegeta-

The average precipitation was 7.05, or:

tion, so that little advancement was made. At the close of the month
work was behind, grass short, gardens backward, wheat below average
condition, feed scarce, stock in poor condition and the prospects for
fruit promising.—E. C. Vose.

Wiseonsin.—The mean temperature was 46.7°, or 2.2° above normal;
the highest was 90°, at Prairie du Chien and Pine River on the 30th,
and the lowest, 12°, at Amherst on the 1st and at Spooner on the 19th.
The average precipitation was 0.85, or 1,92 below normal; the greatest
gonti,hly amount, 2.22, occurred at Barron, and the least, trace, at West

end.

The month was one of the driest Aprils on record, especially in the
southern section, where the total precipitation was only about 20 per
cent of the normal. The effect of the drought is most noticeable on
meadows and pastures. Early sown grain is coming up nicely and
)‘l;g.lparations for corn and potatoes are progressing rapidly. —W. X,

ilson.

Wyoming.—The mean temperature was 40.3°, or 1.0° below normal;
the highest was 88°, at Alcova on the 28th, and the lowest, 15° below
zero, at Centennial on the 17th. The average precipitation was 1.31,
or 0.40 below normal; the greatest monthly amount, 3.11, occurred at
Lander, while none fell at Lovell (Byron P. 0.)—W. S. Palmer.

SPECIAL. OONTRIBUTIONS.

THE THEORY OF THE FORMATION OF PRECIPITATION
ON MOUNTAIN SLOPES.

By Prof. F. PockeLs, School of Technology, Dresden, Germany. Translated from
Ann. d. Physik, 1901, (4) Vol. I1{, pp. 459-480.

It is a well known principle of climatology that the side
of a mountain range which is turned toward the prevailing
wind has in general a greater precipitation than the plain on
the windward side, and a still greater in comparison with the
leeward side of the mountain range. There has bheen no
doubt as to the explanation of this phenomenon since it has
heen recognized that the principal cause of the condensation
of the aqueous vapor is the adiabatic cooling of the rising
mass of air; for a current of air impinging against rising
ground must, in order to pass over it, necessarily rise. So
far as the author knows, however, no attempt has yet been
made to investigate this process quantitatively, except per-
haps, for the stratum of air immediately contiguous to the
earth, whose ascension being equal to that of the surface
itself, is thereby known directly. Such a quantitative treat-
ment will be attempted in the following article. Even
although this is only possible under special assumptions
which represent nature with the closest approximation, it
will, however, always offer a practical basis for estima-
ting the purely mechanical influence exerted by the con-
figuration of the surface of the earth on the formation of rain.

1.

In order to find the standard vertical components of the
velocity of the air currents that determine the condensation,
we must, first of all, solve the hydrodynamic problem of the
movement of the air over a rigid surface of a given shape.
In this connection we must make a series of simplified
assumptions, as follows:

1. The current must bhe staiionary; 2, it must be con-
tinuous and free from whirls; 3, it must flow everywhere
parallel to a definite vertical plane, and consequently depend
only on the vertical coordinate (), and one horizontal co-
ordinate (x); 4, the internal friction, as well as the exter-
nal (or that due to the earth’s surface), may he neglected ;
b, at great heights there must prevail a purely horizontal
current of constant velocity, a. As to the configuration of
the ground, we must, corresponding to proposition 3, assume
that the profile curves are identical in all vertical planes that
are parallel to the plane of 2 y; 6, and further, we assume
the surface profile to he perindic, that is to say, the surface
of the earth is formed of similar parallel waves of moun-
tains without, however, determining in advance the special
equation of the profile curves.

If we designate by « and v the horizontal and vertical com-
ponents of velocity and by ¢ the density, then, in conse-
quence of assumptions 1 and 3, there follows the condition

d(su) L a(e7) g

and in consequence of 2 there must exist a velocity poten-
tial, ¢, which, according to 3, can only depend upon z and v,
so that

U= a o= (Zi', and d— (e(-?—f’:) + i(= d -¢) =0.

dx ay dx \ dx ay\ oy

If we consider that the density of the air in a horizontal
direction (excluding large differences of temperature at the
same level ) changes much more slowly in a horizontal than
in a vertical direction, then we can regard = as a function of
y only, and obtain for ¢ the differential equation—

dedg
(1) o Y ay :

The law of the diminution of density with altitude will,
strictly speaking, be different for each particular case, because
the vertical diminution of temperature in a rising current of
air, which determines the rate of diminution of density, de-
pends upon the condensation. But it is allowable, as a close
approximation and as is usually done in barometri¢c hyp-
sometry, to assnme the law of diminution of pressure which
obtains, strictly speaking, for a constant temperature only,
and which, as is well known, reads as follows:

ed o =—

P,
nat log 5‘-’ =q,

where ¢ is a constant and has very nearly the value of 1/8000
if vy, the difference in altitude, be expressed in meters. In
this case the following also holds good :

log —°= q
and, consequently,
1 de
T gy 1
hence the differential equation for ¢ becomes
g de
(2) de=gq. oy’

A solution of this differential equation that satisfies the
assumptions 5 and 6, is given by the expression
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(8) ¢=a (z—bcosmz.e™),
in which the following relation exists between the constants
m and n.

(4)

In order to ascertain what profile or configuration of the
ground corresponds to the current determined by this velocity
potential, we must look for the lines of flow; for one of these
must certainly agree with the profile curve. The differential
equation of the stream lines reads as follows:

g m—nt=qn;
? n= —g— + r,where r = v/w* + ¢*/ 4.

de

. rrj—sf=a,b'ncos mx.e"V:ia(l+ bmsinmzx.e—"v),

dy:dx=
The integration of this equation gives
(5) m

e~ " ginmr= — —— + Bed¥
bqn
wherein B represents the parameter of the stream lines.
If we assume that the curve of the profile of the surface
passes through the points z=0 and y =0, then for these
values B=m/b q n, and if its ordinates are designated by

%, its equation becomes

.
b1 sinmz.err=p11—1
m

or
4y

_dy
bR sinme.e 1= f'———':—c—,
m q

As long as 7 remains so small that for both the highest
and lowest points of the profile of the surface of the earth
(gu/2)* is negligible in comparison with unity — which is
practically always the case for the mountains that come un-
der our consideration — we can write
(5) [n=—i+n ]
r=v mi+ 4

In these expressions b and m appear as parameters that
can be chosen at will, the first of which determines the alti-
tudes and the second the horizontal distances between the
mountain ridges; we have, namely, m = 2 =/4, if 2 denotes
the wave length, that is to say the distance between two cor-
responding points, as for example the summits of neighbor-
ing mountain ranges.

It is easy to show that the stream line determined by the
velocity potential (8) for the configuration of the ground
given by the transcendental equation (5’) is the only one
compatible with the general conditions 1 to 5. Moreover,
since a potential current is determined single valued, for the

interior, by the value of S;’: along the boundary of a closed

region, therefore, our solution in case it gives horizontal ve-
locities that are constant, or slowly diminish with the altitude
above the center of the valley, is also applicable to the
specially interesting practical case in which only one single
mountain range rises above an extended plain and is struck
perpendicularly by a uniform horizontal current of air. To
what extent this holds good must be established in each
special case.

The horizontal and the vertically upward velocity compo-
nents corresponding to our solution are:

(6) v=a(l+bmsinmz.e —"?)
(7) =abncosm=z.e "
It would now be desirable, in order to be able to handle the
21 2

no_.
7=>b_— sinmx.e~"";
m

cases actually occurring in nature, to adapt our solution to
some form of the earth’s surface arbitrarily chosen. The
first thought would be to attempt this by the superposition
of a series of velocity potentials of the form of equation (3)
having different constants m and b, or in other words to write

(8) o=,

but we find that this solution only corresponds to a super-
position of the profile curves, that is to say, it gives

- N
by s — D1 byoos e~

\ oy,
(9) 1= >y, = \ by, —8in m, r. e~"un
e my

only when we can put the exponential functions e —*, ¥ and
¢ ~", " both equal to unity. In this case y is at once trans-
formed into the simple trigonometrical series
-
Z kp, ﬂ" sin m, ¢

(9')
My,

and therefore, by putting m, = & m, we can develop any arbi-
trary function, 5 = f(x), into a series, proceeding for any
value of x greater than zero and less than 4/2. But the con-
dition that e+2mn js equal to unity for any large value of the
quantity & will not he fulfilled for any arbitrary form of the
profile curve if its maximum altitude is assumed to be very
small in comparison with the wave length 2. Therefore, we
must limit ourselves to an approximate representation of the
desired profile curve by a definite number of terms of the
series that enters equations (9) or (9’). Especially can we
in this way never attain the rigid solution for a ground profile
that has sharp angles. However, the neglected higher terms
of the series have a proportionately slighter influence on the
vertical velocity at great altitudes and, therefore, on the re-
sulting precipitation, in proportion as their serial number &
18 larger.

7l=

2.
*

As a first example, we choose a form of profile to corre-
spond as closely as possible to a plane, broad valley and a
plateau like mountain range, because, in this case, we may
expect nearly the same conditions on the slope of the moun-
tain as if it were struck by a uniform horizontal current of
air. A profile curve of this kind, which rises steadily between

the values « greater than — and less than + -1% and falls

A
12
also with uniform gradient between the limits = = 5/12 4 and
x="T/124, and in the intermediate region describes a hori-
zontal straight line at the distance 4+ H from the axis of z,
is obtained by means of the Fourier series

24 H . ¥
= er" '11’ st "6 i

where h has all positive uneven numbers. In order to repre-
sent a profile curve of the given form approximately, we
take the first three terms of the series, and therefore have

(10) 7= C{4sinm, z+ } sin 3wz + gy sin bm, v}
The numerical values of the parameters are:
i = 60,000 meters, also m, = “1_' —0.1047x 10
and
('= 1,100 meters.

The coefficients b,, in the expressions (8) and (9) there-
fore, have the following values:

b, = 881, b, = 148.3, b, = 24.8
The profile given by equation (10) is shown in fig. 1, where
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the vertical scale is magnified five times. We perceive that
the ascending gradient is nearly all confined to the interval
between

P A
x greater than — 5 and less than + 1%

&

where, moreover, it is quite uniform, and further, that the
surface of the valley is raised a little in the center,and the
surface of the plateau mountain is depressed by the same
amount. The difference in altitude bhetween the center of the
valley and the center of the mountain, which according to the
adopted numerical values should be 900 meters, is therefore,
not the ahsolute maximum difference but is abont 18 meters
less. The profile curve here considered corresponds indeed,
according to what has been above said, only approximately
to the velocity potential

S e=a gx: —b,cosm,x,¢ MY —b,cos3m,x e MY

(11) ]

—nzy!
—b,cos dm,x . ¢ ~"Y,,

as determined by the above coeflicients, &,, but we can easily
demonstrate that in the present example the differences could
scarcely be observed in fig. 1.

 —
£ et
¥ =0 / ol
- 7 S0,
o
_ 1L \\
i \
== Ay =0 g5k 2k "f:Zm%
Fig. 1.

From th® preceding value of ¢ we derive the following
values for the components of the velocities of the current:

)

nu=a

/ 1+ :; by mae~"n¥sin my, » ;
9 \ 2 _ . ca
(12) =a )14+ (b vsinm e+ 8b,c = svsin 3w,
+ 5h,e—"sugin 5w, ) !
5 {*
i )
v=0a X \ by n, e~ "r?co8 m,.r
(13) 1 =ax0.1152 : $e"1¥cos mye + L e "%cos B,
+ fge"vcos 5m, !,

.

These equations show that when » = 0, that is to say above
the center of the slope of the mountain, u is a constant =«
at all altitudes; ahove the valley where z is less than 0, « is
smaller than a; and above the mountain, or plateau, where
is greater than O, u is larger than a; the constant a can also
t)edconsidered the mean horizontal velocity at any given alti-

ude.

For different altitudes H above the center of the valley we
have the following values:

H=4504y: Iy

5, 000

450 2,000

-”-;—‘-‘: —0.068 | —0.0676 | —0.0675 | —0.0646

Therefore, up to the altitude of 5,000 meters, the horizon-
tal velocity is sensibly constant and the vertical velocity 0;
and, according to what is said in reference to equation (5')
our solution holds good for the case when the profile is con-
tinued as a horizontal straight line indefinitely toward the
negative side from the point 2 = —A4/4, and above this there
flows a truly horizontal current of air whose velocity is sen-
sibly constant, namely, 0.93 @ up to an altitude of 5,000 me-
ters and increases in the strata above that until it attains the
value a.

Above the mountain, as at the point where x = + /4, the
velocities, u, are greater than a by nearly as much as they are
smaller ahove the valley.

The distribution of the vertical velocity component which
determines the condensation of aqueous vapor is a more com-
plicated matter. In order to represent it,let the values of vja
for different values of the coordinates x and y be as given in
the following table:

&
v A —o\ A A
¢ | #x | g | FF [ *3
500 0.099 0.0406 0.0129 —0.0012 0
1,580 0.0%42 0.04075 | 0.0149 =+0.00226 [1]
2,440 0.0740 0.0400 0.0182 0. (064 1]
3,460 0.0651 0. 0387 0.0208 0. 0093 0
4,530 0.0575 0.0370 0.(R17 0.0108 0

Therefore, whereas there is a steady decrease of » with alti-
tude above the center of the slope of the mountain, on the
other hand these vertical velocities increase with the altitude
in the neighborhood of the foot of the mountain as well a3
on the plateau at the point x = == /8 up to a maximum at
some very great altitude. (The isolated negative value that
occurs for x = A/6 and y = 500 is explained by the above-
mentioned slight depression of the summit of the plateaun
mountain.)

In order, now, to investigate the condensation of aqueous
vapor that occurs in consequence of the ascending currents
of air forced upward by the upward slope of the ground, we
first make the assumption that the ascending mass of air ex-
periences an adiabatic change of condition and that adiabatic
equilibrium prevailed already in the horizontal current of
air advancing toward the slope of the mountain. In this
case the air will be everywhere saturated at a certain altitude
that can be computed from the temperature and humidity of
the air at the surface of the valley. In a unit of time the
quantity of air, ve¢, flows in a vertical direction through a
space having a unit of horizontal surface and an altitude d v.
If this element of space lies above the lower limit of the
clouds, then in this quantity of air there will be as much
aqueous vapor condensed as the difference between what it
can contain in the state of saturation at the altitude y + dy
and what it can contain at the altitude y. Therefore this
quantity is

—oF
Ve, ay dy,
where F () is the specific humidity of saturated air at the
altitude v. '
Still assuming a stationary condition, we have—

(14)

as representing the total quantify of aqueous vapor condensed
in a unit of time in a stratum of cloud ahove the unit of basal
area between the altitudes y, and ¥'.
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This would also bhe equal to the quantity of precipitation
falling from that layer of cloud on to the unit of horizontal
base in case the products of condensation simply fell verti-
cally without being carried along by the horizontal current |t
of air. We will make this assumption, since as yet we have
no clue by which to frame a computation of the horizontal
transportation of the falling particles of precipitation. It
is, however, easy to foresee that the horizontal transportation
would be of importance, especially for the slowly-falling
particles of water or ice in the upper strata of clouds, and
that on the other hand, the larger drops that carry down
with themselves the water condensed in the lower strata of
clouds will fall at a relatively slight horizontal distance.
But now, as the numerical computation shows, the lower
cloud strata contribute relatively far more to the condensa-
tion than the upper clouds; therefore, the influence of the
horizontal transport will not be so very large, at least with
moderate winds. Moreover, this influence does not affect the
total quantity of precipitation caused by the flow up the
mountain side, but only its distribntion on the mountain
slope and it consists essentially in a transfer of the location
of maximum precipitation toward the mountain. In this
sense, therefore, we have to expect a deparbure of the actual
distribution of precipitation from that which is theoretically
given by the computation of W as a function of #, according
to equation (14). This departure will, under otherwise simi-
lar circumstances, be considerably larger in the case of snow-
fall than in the case of rain.

As concerns the upper limit %', which is to be assumed in
the integration of equation (14) in order to obtain the total
quantity of precipitation falling upon a unit of surface, we
have to substitute for 3’ that altitude at which condensation
actually ceases in the ascending current of air. Theoreti-
cally, if from the beginning adiabatic equilibrium prevails
up to any given altitude, then the condensation brought
about by the rising of the earth’s surface must also extend
indefinitely high, even to the limit of the atmosphere, since
the vertical component of velocity diminishes asymptotically
toward zero. But practically, our solution of the problem
of flow no longer holds good for very high strata probably,
and certainly the assumption of adiabatic equilibrium does
not hold good, and even if the latter were the case, if there-
fore, the ascending current carried masses of air from the
surface of the earth up to any given altituds, still, in conse-
quence of the increasing weight of the particles of precipi-
tation carried up by the ascending current on the one hand,
and the increasing insolation on the other hand, an upper
limit of cloud must be formed.! i

We will therefore assume as given some such upper limit
of clouds at a definite altitude, and for simplicity will assume
this to be the same everywhere. The value of this altitude,
9y, is the upper limit of the integral (14). However, the

altitude assumed for ¥’ if it is large, namely, many thousands |-

of meters, can have only a slight influence on the value of W,
since both — F'(y) and ¢ rapidly diminish with the altitude.

For the numerical computation of W, it is advantageous to
first bring the expression (14) by partial integration into the
following form :

W(z)=[v: )]’ + f A

In this expression » is given by equatlon (13) as a func-
tion of y and 2. F (), or the saturation value of the specific
moisture at the altitude y, as well as the corresponding values
of the pressure and temperature necessary for the computation
of ¢ are most easily obtained with the help of the graphlc

'W. von Bezold. 8itzb. Ber. Akad. Wiss., Berlin, 1888, p. 518, , and
1891, p. 303.

(140.) ()e’l

diagram for the adiabatic changes of condition of moist air
first given by H. Hertz, since a simple analytical expression
for these quantities can not be given. In using the Hertzian

table® we have to remember that y is not the absolute altitude
but the altitude above the axis of z in our system of coordi-
nates, therefors, in order to obtain the altitude above sea level,
it is still to be increased by the quantity — 7 (z—=— 2 and also

hy the altitude of the valley above’ the sea. The integral in
equation (14a) can be evalnated w1th sufficient accuracy by di-
viding the integral from Yo to ¥’ into parts v,...¥,, Y. . .Y

Y1 Yn- - . (where y,=v'), and for each of these introduc-
ing an average value F; whereby we obtain equation (15).
Yn R
- O(zv
15) [P ’5D ay="SF,[on—(ora]-
Y 0

In order to execute the complete computation of W for a
special example, we will agsume that the current of air which
strikes the mountain having the profile shown in fig. 1 has a
pressure of 760 millimeters, temperature, 20°, and specific
humidity, 9.0,* at the bottom of the valley. Hence, according
to our assumptlon of adiabatic equilibrium it follows that
the lower limit of the clouds will lie at an altitude of 950
meters above the hottom of the valley, and, therefore, 50
meters above the center of the mountain, if y,= 500; the
specific humidity is at this cloud level, F (y)’ = 9.0, and the
temperature is 11°C. We will further assume that the upper
limit of the clouds is at an altitude of about 5,000 meters,
or y' = 4,630 meters, where the temperature has sunk to
—13.6° and the specific humidity to /' (y) = 2.5. At the alti-
tude of 3,000 meters the temperature 0° C. is attained. The
application of the Hertzian tables assumes that for tempera-
ture below 0° C. the product of condensation is ice; whether
this is really true is at least questionable for moderately low
temperatures, but the assumption that water below the freezing
point is precipitated will not change the results very much.
Since corresponding to the assumed stationary condition, we
have to assume that all condensed water immediately falls
from the clouds; therefore, in our computation we have to
omit the hail stage of Hertz, in which the water that is car-
ried along with the cloud is frozen *

For the computation of the integral according to equation
(15) the cloud is divided into four layers whose mutual boun-
daries or limits occur at y, = 1,630, again y,= 2,440, and
1y = 3,460 meters; for these altltudes we have e=1 OO and
0.912 and 0. 816, and corresponding to these F(y)=6.9 and
5.35 and 3.8,

We thus find the following values for W/a:

A A A
= — 4+ = —
* 0 * 13 8 =3
W 0475 0241 00985  0.0081 grams per second

a
per square meter.

From this table we obtain the depth of the precipitation
in millimeters per hour by multiplying by 3.6; the result is
shown in the lower curve of fig. 1. The values of the precipi-
tation for a mean horizontal velocity of the current of 1 meter
per second are as follows:

A A A 2 2

= =+ + + - i)
? 0 24 12 g T§ T3
W= 171 147 0867 0355  0.029 0

?H. Hertz. Met. Zeit., 1884. Vol,, I pp. 421-431.

3That is, 9.0 grams of ‘water per kllogram of air,

* The influence upon the adiabatics of condensation, whether we as-
sume, as in the Hertzian table, all condensed water to be carried with
it cgl to immediately fall away, is of no importance in the present
problem.
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Hence, the precipitation is heaviest above the middle of this
slope of the mountain, where for the very moderate wind veloc-
ity of 7 meters per second, it attains the very considerable rate
of 12 millimeters per hour. In this connection it is, indeed,
to be remembered that we have assumed exceptionally favor-
able conditions for the precipitation in that we have assumed
the onflowing air to have been already fully saturated through-
out the whole 4,000 meters in depth of the layer between g,
and v'.

The comparison of the curve of precipitation with the curve
of profile in fig. 1 shows that although the maximum of pre-
cipitation coincides with the maximum gradient of the slope
of the mountain, yet the depth of precipitation diminishes
more slowly toward the plane of the valley and the plateaun of
the mountain than does the slope of the earth’s surface; thus,
for instance, the latter slope at the point where »+ = = 1/12,
and which is given by 9%/ x, amounts only to 1/20 of the

maximum slope, while the precipitation at this point is|?

more than 1/5 of its maximum value. Therefore, under the
conditions here assumed, the effect of a mountain slope in
producing precipitation makes itself felt in the plain lying
in front of the foot of the slope. All of which agrees with
actual experience®. The fact that in reality the maximum
precipitation appears to be pushed more toward the ridge
of the mountain is certainly partly explained, as well as sug-
gested, by the horizontal transportation of the products of
condensation in the clouds, but also in part by the departure
of the real distribution of temperature and moisture from
that here assumed. (See Section 4 hereafter.)

The determination of the total quantity of precipitation
caused by the mountain slope will be attained if we integrate
the value of W as determined by equation (14) as a function
of x between the limits = — A/4 and 2 = + A/4. The result
is, therefore,

A A
+y ! +4
(16) (= I WE)yd = — ‘sl‘"(y) f-v dx
- A ” A
4 4
In this equation, according to equation (13) we have:
+4
‘. o= s —"1!1__‘_")_ n— Ny Y l = As Y ’
Jud.r. a X 1,100 (e g¢ +25c- .

A

1

For our present example we find = 5,100a grams per
second over a strip 1 meter wide and about 22 kilometers long.
Hence, there follows for the average precipitation for the
whole mountain slope

W, =0.833c millimeters per hour.

3.

In the example we have just discussed the lower limit of
the clouds was higher than the summit of the mountain. If
the reverse is the case, then, for that portion of the mountain
slope that is immersed in the clouds we must take 7 instead
of y, as the lower limit of the integral in the formule (14)
to (16); therefore, the theoretical distribution of precipita-
tion would no longer be symmetrical with respect to the zero
point on the axis of abscissas. As an example of this case
we will consider the flow of air above the ground profile that
is represented by the simple equation

p=Csinmz.e "1
As to the constants we will adopt the following:
C = 1,000 meters, A=24,000 meters;
hence m = 0.262 x 103, r=0.269 x 10—,

® Hann. Climatology, 2d edition, vol. 1, p. 295, algso Assmann, Einfluss
der Gebirge auf das Klimat von Mittel Deutschland, 1886, p. 873.

and for the vertical coordinate » we find from equation (5)
A A A A 2 A
fore=—1% § T120 tm Tt ti
7 =-—1,495 —1,194 —585 0 +444 + 716 + 805 meters.

The resulting curve is shown in fig. 2. The altitude of
the summit of the mountain above the plain of the valley
amounts to 2,300 meters. The valley may be 100 meters
above sea level; the atmospheric pressure in the valley is
assumed at 750 millimeters, the temperature 23°, and the
specific humidity 10 grams of water per kilogram of air.
From the Hertzian table we find the lower cloud limit at
the altitude of 1,220 meters, that is to say at y=—3875. The
upper limit of the clouds is assumed at y' = 2,400 and, there-
fore, at 4,000 meters above sea level. Therefore, for that por-
tion of the clouds lying below the summit of the mountain,
which is limited to the negative values of the abscissas up to
= —1.3b killimeters approximately, since according to eqna-
tion (7)

v=Camcosmz.e—"¥
we have:
y y!
W= — f coPdy=—alCm cosmx’ e F' (y)e—nrvdy
W Mo
= a cosmux X 1.09,
Therefore, the depth of the precipitation will here be repre-
sented by a simple cosine curve and, in general, corresponds
to the slope of the mountain, which is computed from equa-
tion (5’) by the expression :
dy__ Cmcosmz.e "
dx 14+ Crsinmz.e—7n

For the region lying above the lower cloud limit y, the value
of H'(x) can not be represeunted by a simple function of x.
We find the precipitation in millimeters per second for a hori-
zontal velocity a= 1, as follows:

Fory =—6 —5 —4 -3 —2)
"= 0 1.01 1.96 2.78 3.40\ Lower half of the cloud.
Forz = —1 0 +2 44 +6)

117=3.50 2.94 1.95 0.88 0 1n the cloud.

The distribution of precipitation, as given by these figures
is shown in fig. 2 by the curve of dashes. The curve of dots
represents the symmetrical line that would obtain if the
mountain were not immersed in the clouds. The location of
maximum precipitation is 3.93 for =0 and is 8.68 for
r=—63.

The total quantity of precipitation is computed by the
formula ;

y!
G=—aCsinmaz | <F (y)e"vdy
Yn
and is approximately equal to 22,780; this is distributed over
a horizontal strip 12,000 meters in length, and therefore, for
a uniform distribution for a =1 the precipitation averages
1.9 millimeters.
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From the preceding expression for @, it is plain that for
any given altitude of the mountain summit G will be smaller
the shorter and steeper the slope becomes, that is to say, the
smaller the value of 1 is, since the exponent ny increases
with diminishing values of 4. In the present case the hori-
zontal velocity of the wind is given by the expression:

2
% =2—£ =a ( 1+ 0™ sin m e-"”’)
o n

=a(l + 03832 sin m . e #¥);

which attains its minimum, = 0.547 a, at the hottom of the
valley, and its maximum, 1.283 a, at the summit of the moun-
tain, and has « for the mean value of all the horizontal planes.
Above the center of the valley it increases gradually with
altitude, asymptotically approaching its limiting value, a; for
example, at the level y =0, it is equal to 0.668 a, and at the
level y = 2,400 it is already equal to 0.80 . Therefore, if the
stream under consideration proceeds from a point x =—2/4,
as a purely horizontal current of air flowing over a plain,
then its velocity must diminish with the altitude in the ra-
tio e—*¥. This would, of iteelf, be a plausible assumption,
hut there would then be a vortex motion for each horizontal
current of air, which can not, strictly speaking, continue
steadily in the above assumed potential motion.
4.

The assumptions hitherto made by us, namely, that the
distribution of temperature in the current of air that im-
pinges upon the mountain side already corresponds to the
condition of indifferent equilibrium, that is to say that it is
the same as would occur in an ascending current of air under
adiabatic changes of condition, is in general not actually
fulfilled. The scientific balloon ascensions at Berlin have
recently given us reliable conclusions as to the real condi-
tions of temperature and moisture in the free atmosphere
up to altitudes of 8000 meters. The mean values of the
temperature and moisture at successive levels, 500 meters
apart, which von Bezold has deduced® from the observations
of Berson and Siiring show that the mean vertical diminu-
tion of temperature is slower than the adiabatic, and that, in
general, the moisture does not attain the saturation value.
In a horizontal current of air, in which these average condi-
tions prevail, the air will, therefore, never bhe saturated, and,
consequently, our assumption of the existence of a constant
lower limit to the clouds is not allowable. Moreover, it is
no longer the vertical component alone that controls the con-
densation that shall occur at any given point in the current
of air ascending above the mountain slope, as was assumed
in the derivation of formula (14). We must rather, in the
computation of W, consider that the quantity of water con-
densed in a unift of space under steady stationary conditions
is equal to the excess of the quantity of water vapor flowing
into the space above that simultaneously flowing out. For
one cuhic meter and one second this excess is:

_ (c’)(suF) + I(cv F)
dx ay )’
or since because of the equation of continuity we have
approximately

deu
dx

dzv _

Py - 01
oy

therefore’,

%W. von Bezold. Theoretische Betrachtungen, ete. Theoretical
considerations relative to the results of the scientific balloon ascen-
sions of the German Association for the Promotion of Aernautics at
Berlin. Brunswick, 1900, pp. 18-21.

"In so far, namely, as the quantity of the aqueous vapor condensed
in a unit of volume 18 inappreciably small in comparison with the total
quantity of moist air flowing through this space.
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( oF
— &l U
dx

yl

) oOF oFr
S (v5z +0%5,) v
y"

where 3° and 4’ indicate the altitudes of the limits of the
clouds above the point under consideration. The evaluation
of the integral still demands not only a complete knowledge
of the stream, but also the determination of the cloudy region,
that is to say, that region in which the atmosphere is sat-
urated and the distribution of temperature therein, since the
latter first gives us the value of F. To this end we have to
follow the adiabatic change of condition of the air around
each curve of flow, starting with the given temperature and
humidity in the vertical above the center of the valley where
= — 2[4, where the current is truly horizontal.

By connecting together those points in the individual
stream lines at which saturation is just attained we find, first,
the contour of the clondy region.

-Since the form of the clouds is also of interest in and of
itself®, therefore its determination will be carried through as
a part of our second example, in that above the center of the
valley, where 2= — /4 first for the summer, then for the
winter, we make some assumption as to the mean distribu-
tion of temperature in accordance with von Bezold’s col-
lected data, on page 21 of his memoir above quoted. In ac-
cordance with this, we have:

oF
+ v @ )’
and hence,

I.l.’

(17)

For y = —1,600 —600 +400 41,400 +2,400 m.
Valley above gea Helght above
level, 100 m, gea level, 4,000 m.
\ i= 177" 11.0° 53" + 09° — 5.0°
Summer , p_ g9 689 459 = 308  2.60*
. {t= 02° —0.6° -—5.1" —10.8" —14.6°
Winter ) p_ 292 217 164 119 086

In place of the value of F| designated by a star, we will take
that value (2.2) that results from the smoothing out of the
protuberant corners which the curve for F (see von Bezold,
fig. 11) shows at the altitude of 4,000 meters.

According to equation 5 the lines of flow have for their
expression

e Mginmar = —;——

or if y, is the value of ¥ when x =0, and y — ¥, = », there re-
sults,
m

bq

e~meTrhsinme=g—(ct1—1),
bn

n¥ ¢ —T gin 17 an _an
e~ g — Immae=—{ ‘2 2 ).
m q(e —e

With the same degree of approximation as before the right-
hand side of this equation can be put equal to »; therefore
the equation takes the following form:

(18)

which differs from equation (5’) of the profile curve of the
ground only through the factor which is constant for each
line of flow, which factor causes the amplitude of the waves
to steadily diminish upward.
If, now, the lines of flow are made through a definite point
y'n for the vertical and x = — /4, then for this point we de-
#It seems, for example, quite possible to argue from the observed

boundary of the clouds inversely to the percentage of moisture in the
current of air flowing toward the mountain slope.

n .
7;=b7'; Blnmx.e —T7 e R,
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termine the appropriate value %' from the transcendental
equation :

(19)

and then substitute y? = %', — %' in equation 18.

In this way we have computed the four lines of flow whose
initial and lowest points are at the altitude above sea level of
1,000, 2,000, 3,000, a.nd 4,000 meters, and which are drawn as
eurves I, II, 111, IV in ﬁ 3. The highest points of these
curves are at the a.lt1tudes 2,940, 3,610, 4,333, 5,100 meters,
respectively.
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If now, by means of the Hertzian table, we determine the
altitudes at which condensation begins at the hase curve 0 and
for the curves I, II, III, IV, then assuming the above given
values of ¢t and F,” we find the following results:

0 1 I1 111 Iv
For the summer 930 1,570 2,730 4,060 (5,125)
For the winter 600 2,070 3,100 4,130 5,100

In the summer, according to this table, condensation will
not take place on the stream line IV, since its summit lies at
the altitude of 5,100 meters; the summit of the clouds will,
therefore, lie a little below this. In the winter, the summit
of line IV accidentally agrees with the summit of the cloud.
In the construction of the clond limit, introduced as a dotted
line in fig. 3, and indicated hy S for summer and W for win-
ter, we have also used the lines of flow midway between 0 and I
and I and II, respectively.”

We can now, with the help of the Hertzian table, easily
find the quantity of water condensed in every kilogram of
moist air as it progresses along any one of the lines of flow
that we have constructed, either in its totality or as it passes
successive vertical lines: we thus attain the following values
of the total condensation:

Curve 0 I ITI TII
For the summer 2.86 242 122 0.26 grams.
For the winter 15 0.74 034 0.14 grams.

® From the above numbers it follows that an elevation of any form
of less than 500 meters will not give occasion for condensation under
average atmospheric conditions neither in summer nor in winter. In
the summer, for a mountain altitude of between 600 and 800 meters, a
cloud will form between the altitudes 1,000 and 3,000 meters, but will
not touch the mountain; it is only for greater mountain heights that
the cloud will rest on the mountain.
mIn an analogous way for the first example, where we have assumed
lateau-like mountain of 900 meters altitude, we find a region of cloud
which, for the average summer conditions, begins at 40 meters below

the summit of the plateau and reaches up to over 3,000 meters; but in
winter, on the other hand, it begins at 500 meters above the valley and |
rises up only about 700 meters above the mountain top; therefore, in

this season it covers the mountain like a flat cap. {0

Let g, (A) be the quantity condensed up to the abscissa z
when moving along that line of flow whose initial point is at
the altitude h, and let H be the initial altitude of that line
of flow which at the given abscissa  intersects the upper cloud
limit; moreover, let «' be the horizontal velocity of flow and
¢’ the density of the air at the altitude 4 above the bottom of
the valley, therefore, for the point whose abscissa =—1/4;
then will the total quantity condensed per second above the
base area one meter broad from the beginning of the clouds
to the point z, expressed in grams, be as follows:

H

rs' w . (h)dh.

o

=

(20)

The quantity of air, = « kilograms, flows in one second
through a strip of the vertical plane at x = — /4, having a
unit width and the height d A; but an equal quantity must
flow out per second through the vertical whose ahscissa is «,
and since the condition is steady, it therefore behaves as
though the quantity of air, ew, had moved in one second
along the line of flow from —4/4 up to z; but in this the
quantity of water sug, (%) is separated from the air accord-
ing to our definition of g¢.

If we have computed @ as a function of 2, according to
to formula (20), then, finally, we have

Xt

W="5y

(21)

as the quantity of water, sxpressed in grams, per horizontal
square meter per second, that falls at the place . In this
way the determination of IV is executed more conveniently -
than through the direct formula (17). By assuming the
average conditions for the summer in the above example for
a=1, wo find that the integral (20), if we compute it as
approximately equal to the sum of the intervals between the
individual current curves of flow as constructed, gives the
following:

Gm:() = 1,352,

A

G=2=2680, G ;,,=% = 3,460 grams.
Thie last number indicates the total precipitation falling on
a strip one meter wide in one second on the side of the slope
that faces the wind. According to the course of the curve S,
as shown in fig. 3, the precipitation begins, first, in the neigh-
horhood of x= —0.1084 and therefore is distributed along a
strip of the ground surface, whose length is 0.358 4, or 8,600
meters; from this we compute the average precipitation per
hour, as follows: .

3.6x 3,460
8600 = 1.45 mm.
Similarly, we find for winter:
G y—o =380, G,-,,__— 770, Gz_i 1,264 ;

the total precipitation is distributed over a strip 9,400 meters
long, so that the average precipitation is 0.485 millimeters
per hour.

From the above three values of /' (x) we can graphically
construct the course of this function approximately by con-
sidering that the tangent to the curve for ¢ is horizontal at
its initial point and when z= 4 1/4.

The tangent to the slope of the curve is found by con-
sidering its measure W’. Thus we recognize in our case that
the maximum of the precipitation in summer is attained be-
tween =0 and x=—1, but in winter between x=0 and

= 4 2 kilometers and amounts to a X 2.2 millimeters, or
a X 0.756 millimeters per hour, respectively, for a wind velocity
f @ meters at some very great altitude; furthermore, after
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passing the summit of the mountain the precipitation dimin-
1shes more slowly than was found under our previous assump-
tion of a constant thickness of clouds. In reality, on account
of the conveying of the water or ice with the cloud, which we
still neglect as before, the maximum of precipitation is pushed
still more toward the summit of the mountain. Moreover,
since one part of the cloud floats over the summit and is there
dissipated in the sinking or descending currents of air, the
precipitation will stretch a little beyond the summit, but its
total quantity will be less than the computed.

The results of the preceding analysis, namely, that there
exists a zone of maximum precipitation on the windward slope
of a mountain and that the inclination of the surface of the
earth is more important in determining the quantity of pre-
cipitation than is its absolute elevation, is conformed by ob-
servations, at least for the higher mountains."

ON THE IONISATION OF ATMOSPHERIC AIR.
By C. T. R. WiLson, M. A, F R. 5§, dated February 1, from the proceedings, Royal
Society,Vol. LXVIII, pp. 151-161, May 4, 1901,

The present communication contains an account of some
of the results of investigations undertaken for the Meteoro-
logical Council with the object of throwing light on the
phenomena of atmospheric electricity.

In a paper' containing an account of the results arrived at
during the earlier stages of the investigation I described the
behavior of positively and negatively charged ions as nuclei
on which water vapor may condense.

The question whether free ions are likely to occur under
such conditions as would make these experimental results
applicable to the explanation of atmospheric phenomena
was left undecided in that paper. My first experiments® on
condensation phenomena had, it is true, proved that in ordi-
nary dust-free, moist air a very few nuclei are always present
requiring, in order that water should condense upon them,
exactly the same degree of supersaturation as the nuclei pro-
duced in enormously greater numbers by Rintgen rays, and
I concluded that they are identical with them in nature and
that they are probably ions®. While, however, later experi-
ments proved that the nuclei formed by Rontgen or uranium
rays can be removed by an electric field and are, therefore,
ions; similar experiments made with the nuclei which occur
in the absence of ionising radiation led to negative results'.
In the light of facts brought forward in the present paper I
should now feel disposed to attribute the negative character
of the results in the latter case to the small number of nuclei
present’.

Subsequently to the publication of the work on the be-
havior of ions as condensation nuclei, Elster and Geitel
showed that an electrified conductor exposed in the open air
or in a room lost its charge by leakage through the air, and
that the facts concerning this conduction of electricity
through the air are most readily explained on the supposi-
tion that positively and negatively charged ions are present
in the atmosphere. The question where and how these ions
are produced remained, however, undetermined; it would,
therefore, be incorrect to assume their properties, and in par-
ticular their behavior as condensation nuclei to be neces-
sarily identical with those of freshly produced ions; the
carriers of the charge might consist of much more considera-
ble aggregates of matter than those attached to the ions with

1See Hann ‘ Klimatologie,” Vol. I, p. 208,

'Phil, Trans., A., vol. 193, pp. 289-308.

2 Roy. Soc. Proc., vol. 59, p. 335, 1896.

3Camb. Phil. Sec. Proc., vol. Y, p. 337.

1 Phil, Trans., A., vol. 193, pp. 289-308.

5The similar results obtained with nuclei produced in air exposed to
ultraviolet light require, however, some other explanation.

which the condensation experiments had been concerned.
Moreover, so long as the source and conditions of prodaction
of these ions remained undetermined, one could not assume
their presence in the regions of the atmosphere where super-
saturation might be expected to occur.

Before going further afield in search of possible sources of
ionisation of the atmospheric air,it seemed advisable to make
further attempts to determine whether a certain degree of
ionisation might not be a normal property of air, in spite of
the somewhat ambiguous results given by the condensation
experiments to which I have referred.

After much time had been spent in attempts to devise some
satisfactory method of obtaining a continuous production of
drops from the supersaturated condition, I abandoned the
condensation method and resolved to try the purely electrical
method of detecting ionisation. Attacked from this side, the
problem resolves itself into the question: Does an insulated-
charged conductor suspended within a closed vessel contain-~
ing dust-free air lose its charge otherwise than through itas
supports when its potential is well below that required to
cause luminous discharges ?

Several investigators from the time of Coulomb onward
have believed that there is a loss of electricity from a charged
body suspended in air in a closed vessel in addition to what
can be accounted for by leakage through the supports® 1In
recent years, however, the generally accepted view seems to
have been that such leakage through the air is to be attrib-
uted to the convection of the charge by dust particles.

The experiments were begun in July, 1900, and immedi-
ately led to positive results. A summary of the principal
conclusions then arrived at was given in a preliminary note
“On the leakage of electricity through dust-free air,” read be-
fore the Cambridge Philosophical Society on November 26.
Almost simultaneously & paper by Geitel appeared in the
Physikalische Zeitschrift” on the same subject, in which
identical conclusions were arrived at in spite of great differ-
ences in the methods employed.

The following are the results included in the preliminary
note, which I read:

1. If a charged conductor be suspended in a vessel contain-
ing dust-free air, there is a continual leakage of electricity
from the conductor through the air.

2. The leakage takes place in the dark at the same rate as
in the diffuse daylight.

3. The rate of leak is the same for positive as for negative
charges.

4. The quantity lost per second is the same when the initial
potential is 120 volts as when it is 210 volts.

5. The rate of leak is approximately proportional to the
pressure.

6. The loss of charge per second is such as would result
from the production of about twenty ions of either sign in
each cubic centimeter per second in air at atmospheric
pressure.

Of these conclusions the first four were also arrived at by
Geitel.

As Geitel has pointed out, Matteuci® as early as 1850, had
arrived at the conclusion that the rate of loss of electricity
is independent of the potential. He had also noticed the
decrease in the leakage as the pressure lowered.’

The volume of air used in my experiments was small, less
than 500 cubic centimeters in every case, many of the measure-

“Perhaps the most convincing evidence of this is furnished by the
experiments of Professor Boys, described in a paper on Quartz as an
insulator. Phil. Mag., vol. 28, g 14, 1889,

" Physikalische Zeitschrift, 2 Jahrgang, No. 8, pp. 116-119, published
November 24.

8 Annales de Chim. et de Phys., vol. 28, p. 385, 1850,

?This was also observed by Warburg, Annalen der Physik u. Chemie,
vol. 145, p. 578, 1872,



